Aspen Walkers
Software Journal

Inaugural Edition
August 2025

type Edition = {
year: uint
month: Month

New Beginnings

The goals of this journal.

By Elias Prescott

In 2025, we are more connected than ever before. Social media and the internet spread information faster than anything
else has in human history. Yet, in spite of these advancements, it is easier than ever to feel alone.

The internet is an amazing invention that has provided us with a lot of benefits, but it also comes with plenty of
drawbacks. We often gloss over the downsides of our hyper-connection, but they are real and they affect all of us. They
can especially affect those of us who work with technology in our hobbies and careers. Every day is an onslaught of new
frameworks, new press releases, new hot takes on the best ways to write software or manage technology.

This journal is an attempt to disconnect from the constant noise. To build real connections rather than the fake
“friendships” you find on social media. To consider software and the tools we use to build it, in a slow and deliberate
manner.

The Better Software Conference

A conference to keep an eye on.
By Elias Prescott

Recently, somewhere in a small town in Sweden, there was the inaugural meeting of the Better Software Conference [1].
This is a very small and exclusive conference with the goal of improving the quality of software development.

Only a few of the talks are currently available on the YouTube channel [2], but I have loved what I have seen so far.
Casey Muratori’s opening talk on the history of OOP (Object Oriented Programming) was fascinating and I already find
myself wanting to watch it again.

The Big OOPs = _,

Anatomy of a = -

Thirty-five-year Mistake .

e

|
Figure 1: Click the image to watch the talk on YouTube.

I would highly recommend that every programmer watch Casey’s talk because I think it is a great examination of how
the OOP mindset has mislead the industry in specific ways. His point about Alan Kay’s and Bjarne Stroustrup’s focus on
encapsulation and the possible damage that has caused was very interesting and something I think every programmer
would do well to consider. There are many more talks that I am looking forward to as well. I have heard interesting
things about Eskil Steenberg and his body of work, so I am looking forward to both of his talks.

20f6

https://youtu.be/wo84LFzx5nI

Making Memes with Typst

Using the right tool for the wrong purpose.
By Elias Prescott

Typst [3] is a “markup-based typesetting system” [4] that is
designed as a modern alternative to LaTeX. At the time of
this writing, Typst boasts a wide array of features and can
export documents to PDF, PNG, and SVG. Typst provides
all the mathematical and typographical features you might
need to create scholarly papers, but it also provides enough
customizability to support more esoteric use cases.

I have been using Typst for a while now and really
enjoying it. I rewrote my resume from scratch using it, and
I was pleasantly surprised on how easy the process was.
The only source I needed was the official Typst
documentation listed on their website [3]. I will say I have
to jump around the docs a bit to remember the arguments
for the various functions, but there is a community-built
LSP (Language Server Protocol) Server for Typst that is
supposedly pretty good.

=g - S e c—
o \‘-’\ —
. // A

S

OlITaKENNETE She

Since I was having fun using Typst for its intended purpose, naturally I decided I should use it to make a meme. Typst is
not necessarily made for this kind of image composition, but it took surprisingly little finagling to make it work. See

Listing 1.

#set page(width: auto, height: auto, margin: Opt)

#set text(48pt, font: "Impact", fill:

#image("griffin.jpg", width: 800pt)

#place(

center + bottom,

dy: -10pt,

[Don't use Typst to make memes],
)

white,

stroke: (paint: black, thickness: 2pt))

Listing 1: Example Typst code for making a basic meme.

Call for Participation

A tantalizing opportunity...
By You?

If you would like to submit an article to this journal, please let me know! I am planning on releasing a new edition of the

journal every month, so I am always open to contributions. Here is a rough list of the kind of submissions that would fit

the journal:

« Article on a new/old technology and how you have used or would like to use it.

« Review of a scholarly paper, conference talk, book, podcast episode, or some other form of media that is relevant to the

life or work of an IT professional.
« Spotlight on interesting technologies or projects.
+ Original cover artwork.

Visit our GitHub repo to find more information and start contributing!

30f6

https://github.com/EliasPrescott/aspen-walkers

Books Every Programmer Should Know

Pro Git 2nd Edition
By Elias Prescott

Git is one of those tools that has become nearly ubiquitous for modern software development. Version control is a vital
tool for any kind of programming, but it took a while for Git to rise to the top. Even now, there are plenty of competitors
to Git, old and new, that still enjoy significant usage. But, if you are a student or a new programmer, Git is your best bet
to learn. Even if you somehow land a job at a company that doesn’t use Git, you will still benefit from understanding how
Git works. Git has almost become the lingua franca of version control. To many people, Git is version control.

All that to say, I would highly recommend the book Pro Git [5]. It is available to read online for free. It is also available to
download for free in PDF and EPUB formats [6].

I think it is a fantastic introduction to Git and the motivations behind version control. It introduces all the basic concepts
and tools that should cover 99% of what you need for day-to-day collaboration on a programming team. But it also goes
further in depth. One section covers debugging with Git, showing how you can use git blame and git bisect to quickly
isolate tricky bugs and regressions in your codebases. The last chapter discusses the internals of Git. Breaking down the
distinction between the plumbing and porcelain of Git.

If you want a deeper understanding of Git and version control in general, I would highly recommend this book. Plus, you
can’t beat free!

Rolling Your Own Tools

When reinventing the wheel is better.
By Elias Prescott

As part of producing this journal, I set up a basic website where people could view and download all editions of the
journal. For now, the website is very simple. It is simply a list of journal editions, each with an image preview of the
cover page, and a link to view the journal PDF. Generating simple, static sites like this is a very well-known problem. So
much so, that there is even a dedicated term for the tools that do it: Static Site Generators (SSGs).

I've used various SSGs in the past for making my blog, so I figured I could just grab any popular one to produce the
journal’s website. At first I tried using Hugo since I've heard good things about it. But I ran into issues because Hugo
seems to be designed in terms of “archetypes” or “content types.” Essentially, Hugo assumes that you will have a list of
markdown files, with each file corresponding to a single post or page on your website. This does not match with what I
wanted to build. I just want to take a list of PDFs and cover images, copy them to a static output directory, and use some
nice templating language to display the cover images and PDF links. I'm sure Hugo could do this if you really read
through the documentation, but I wanted to get this working quickly. I didn’t want to learn the Hugo way of doing
things and figure out how my use case might fit inside of that, I just wanted to execute my vision my way.

After playing with Hugo a little bit and not finding a great way to do what I wanted, I tried switching to Astro. I've heard
really good things about Astro, and I've even enjoyed playing around with it in the past. Astro lets you write normal JSX
(like you might with React), and then it will compile it down to static html pages by default. And if you want a JavaScript

Ul framework for some interactivity on your site, you can opt-in to using React, Vue, or many other frameworks without
too much difficulty. Astro also makes it easy to integrate with many types of data sources to pull data at build time, or
even do some server-side logic. If you want to write some API endpoints or render some HTML server-side, Astro can do
that too. Astro represents a hybrid approach where you can statically render some HTML at build time, but any dynamic
routes will be compiled into a Node.js server or deployed to whatever cloud server is popular in JavaScript land these
days.

But my use case was a lot simpler than that, I just wanted to take some static assets and make a single HTML page to link
them together. So I read through the Astro docs and found a way to load static assets using a glob syntax (e.g. /public/
editions/*/journal.pdf). This worked fairly well, and I eventually found a way to load all my PDFs and images into
Astro so I could produce the HTML I wanted. It worked well locally, so I wrote a simple GitHub Action to deploy it and I

40of 6

https://gohugo.io/
https://astro.build/

pushed it all to GitHub. After waiting for my DNS entries to propagate, I finally could open the page I deployed in my
browser, only to discover that my links and edition titles were all broken.

That is when I discovered that Astro rewrites the path to your public assets when it does an actual “production” build. So,
the behavior that I observed from Astro in development, the behavior I was relying on to make my process work, was
completely different from the behavior I got when I deployed the site. I am not blaming Astro for this, but it brings up the
same problem I had with Hugo. I was trying to take my paradigm or my view of the problem and cram it into Astro’s
framework for doing things. Astro has a lot of great features, and its paradigm is probably really great if you are working
on the kind of site that Astro is designed to build. But if you are venturing off the beaten path and trying to use a tool in a
different way than how it was meant to be used, you will eventually fail to make the tool do what you want, or you will
end up with a knotted mess of code or configuration.

I finally realized that I needed to take a step back and approach my problem differently. What would happen if I wrote
my own tool that did the minimal set of things that I needed? With that approach, I would have complete control over
the process, and I wouldn’t have to spend any time learning someone else’s tool.

So I deleted my Astro project and spent an hour or two writing my own tool for building the site. And you know what?
My tool works perfectly and it is so much simpler than what I was trying to do with Astro. Not only is it better, but
making it helped me make better decisions in other areas of the project as well. Trying to fit my use case into Astro’s
paradigm led me to make poor decisions in how I organized the project, but writing my own tool gave me total freedom
to shape things how I saw fit. understand it so much better, but I also believe other people will find it much easier as
well. If someone else needs to modify the build process in the future, they won’t have to go searching through the
documentation for Hugo or Astro to figure out what it going on. They will be able to just read the code I wrote, and make
whatever changes they need. The code is the documentation, we don’t have to rely on some other project’s
documentation just to understand our own build process. Rather than needing an entire JavaScript project just to
generate one HTML page, I have around 100 lines of simple F# code that does exactly what I want. And even if you have
never written a line of F# in your life, I guarantee you could figure out roughly what the code is doing and that you could
start making changes with confidence fairly quickly.

Even if the site grows in complexity and we end up needing to write more code to build it, I would still prefer having
complete control over the process. I would rather rely on thousands of lines of code that I can quickly read and modify
rather than hundreds of thousands of lines of JavaScript that are split across hundreds of transitive dependencies. If my
tool has a bug, it would be trivial to isolate and fix it. If Astro has a bug, good luck.

So, my takeaway from this process is that you should probably be writing your own tools more than you are right now.
Take a look at the tools you use and ask yourself: “Am I struggling to make this work for me? Is this tool overkill for
what I am doing?” I do think frameworks and tools have a purpose and there are times when you should use someone
else’s tool, but learning to make your own tools that do exactly what you want can be tremendously beneficial to your
work and your career.

50f6

https://fsharp.org/

Bibliography

[1] “BSC 2025” [Online]. Available: https://bettersoftwareconference.com/

2] “Better Software Conference - YouTube.” [Online]. Available: https://www.youtube.com/@BetterSoftwareConference

(2]
[3] Typst GmbH, “Typst: Compose papers faster.” [Online]. Available: https://typst.app/
[4]

4] Typst GmbH, “typst/typst: A new markup-based typesetting system that is powerful and easy to learn.” [Online].

Available: https://github.com/typst/typst/

[5] Scott Chacon and Ben Straub, Pro Git, 2nd ed. Apress, 2014.

[6] “Git” [Online]. Available: https://git-scm.com/book/en/v2

60of6

https://bettersoftwareconference.com/
https://www.youtube.com/@BetterSoftwareConference
https://typst.app/
https://github.com/typst/typst/
https://git-scm.com/book/en/v2

	Aspen Walkers Software Journal
	Inaugural Edition August 2025
	New Beginnings
	The Better Software Conference
	Making Memes with Typst
	Call for Participation
	Books Every Programmer Should Know
	Rolling Your Own Tools

	Bibliography

